
Continuations

The Ultimate Control Structure

Suppose expression E contains a subexpression S

The continuation of S in E consists of all of the
steps needed to complete E after the
completion of S.

At any point during a computation the current
continuation is the continuation of whatever
expression is currently executing. Note that the
current continuation is constantly changing.

For example,
(define fact (lambda (n) (if (= 0 n) 1 (* n (fact (- n 1))))))

Consider expression E: (printf "5! = ~s" (fact 5))

The continuation in E of (fact 5) is the call to
printf.
The continuation in E of (fact 4) is "multiply the
result by 5, then call printf".
The continuation of (fact 3) is "multiply the result
by 4, multiply the result of that by 5, then call
printf.

Note that the continuations become increasingly
complex as we proceed through the recursion.

Now consider fact-acc, the accumulator version
of fact:

(define fact-acc (lambda (n acc)
(if (= 0 n) acc (fact-acc (- n 1) (* n acc)))))

Let E be the expression (printf "5! = ~s" (fact-
acc 5 1))

The continuation of (fact-acc 5 1) is the printf
statement.

The continuation of (fact-acc 4 5) is the printf
statement

Note that in this last example the continuation
doesn't change as we go through the recursion.
The difference is that the accumulator version
is tail-recursive and the original version is not.

The continuation of a deep recursion becomes
more complex as the recursion progresses. The
continuation of a tail recursion remains
constant as the recursion progresses.

We can illustrate this using Scheme expressions to
describe the continuation, with representing
the current expression. The is called a
"context" for the continuation.

For example, consider the expression

S: (* (* 2 5) (+ 3 8))

If we let E1 be all of S, then C1, the current
continuation, is : do the whole computation and
return it.

If E2 is (* 2 5) then C2, the continuation of E2, is
(* (+ 3 8))

If E3 is (+ 3 8), the continuation of E3 is C3: (* 10).

The current subexpression and its continuation
make up the current execution state of the
computation.

The sequence of execution states shows the
dynamics of the computation.

Ex. (define fact (lambda (n) (if (= 0 n) 1 (* n (fact (- n 1))))))

Here are the dynamics of (fact 3)

Direction Expression Continuation Result of
Expression

IN (fact 3) ?

IN (fact 2) (* 3) ?

IN (fact 1) (* 3 (*2)) ?

IN (fact 0) (* 3 (* 2 (* 1))) ?

OUT (fact 0) (* 3 (* 2 (* 1 1))) 1

OUT (fact 1) (* 3 (* 2 1)) 1

OUT (fact 2) (* 3 2) 2

OUT (fact 3) 6 6

(define fact-acc (lambda (n acc)
(if (= 0 n) acc (fact-acc (- n 1) (* n acc)))))

Dynamics of (fact 3 1)

Direction Expression Continuation Result of
Expression

IN (fact-acc 3 1) ?

IN (fact-acc 2 3) ?

IN (fact-acc 1 6) ?

IN (fact-acc 0 6) ?

OUT (fact-acc 0 6) 6 6

OUT (fact-acc 1 6) 6 6

OUT (fact-acc 2 3) 6 6

OUT (fact-acc 3 1) 6 6

Direction Expression Continuation Result of
Expression

IN (fact-acc 3 1) ?

IN (fact-acc 2 3) ?

IN (fact-acc 1 6) ?

IN (fact-acc 0 6) ?

OUT (fact-acc 0 6) 6 6

OUT (fact-acc 1 6) 6 6

OUT (fact-acc 2 3) 6 6

OUT (fact-acc 3 1) 6 6

Note that in a system that handles tail recursions properly, the last
three lines in this table can be omitted, since once you know that the
continuation is a constant we know the whole value the expression
will return as soon as you know the value of the current expression.

